出版時間:1999-04 出版社:清華大學(xué)出版社
內(nèi)容概要
內(nèi)容提要
本書是根據(jù)國家教委考試中心制定的1997年開始起用的新的考試大綱,并對歷年入學(xué)試題、考生
做題時易犯的錯誤、成績分布等做了詳細(xì)分析,又在多年參加各類“研究生數(shù)學(xué)輔導(dǎo)班”教學(xué)經(jīng)驗的基礎(chǔ)
上編寫而成的,是報考工學(xué)碩士生的應(yīng)考指南,絕大部分內(nèi)容經(jīng)濟(jì)類考生也適用。
全書分高等數(shù)學(xué),線性代數(shù),概率和數(shù)理統(tǒng)計三個部分,每個部分包括內(nèi)容提要,例題分析及自我練
習(xí)題,最后附有1998年、1999年碩士學(xué)位研究生入學(xué)考試數(shù)學(xué)試題及參考答案二份。
本書適宜于應(yīng)考考生,對各類職工業(yè)余大學(xué)的學(xué)員和教師也有參考價值。
書籍目錄
目錄
第一部分 高等數(shù)學(xué)
第1章 函數(shù)
1.1 內(nèi)容提要
1.2 例題分析
第2章 極限 連續(xù)
2.1 極限
2.2 函數(shù)的連續(xù)性
自我練習(xí)題與答案
第3章 一元函數(shù)微分學(xué)
3.1 導(dǎo)數(shù)與微分概念及計算
3.2 導(dǎo)數(shù)的應(yīng)用
自我練習(xí)題與答案
第4章 一元函數(shù)積分學(xué)
4.1 不定積分
4.2 定積分
4.3 定積分應(yīng)用
自我練習(xí)題與答案
第5章 常微分方程
5.1 一階微分方程的解法
5.2 二階可降階的微分方程
5.3 高階線性微分方程的解法
5.4 微分方程應(yīng)用題
自我練習(xí)題與答案
第6章 多元函數(shù)微分學(xué)
6.1 空間解析幾何
6.2 多元函數(shù)基本概念,
6.3 多元函數(shù)微分法
6.4 多元函數(shù)的極值
6.5 方向?qū)?shù)與梯度介紹
自我練習(xí)題與答案
第7章 重積分
7.1 二重積分
7.2 三重積分
第8章 曲線積分與曲面積分
8.1 曲線積分 格林公式
8.2 曲面積分 奧氏公式與斯氏公式
8.3 場論初步
自我練習(xí)題與答案
第9章 無窮級數(shù)
9.1 數(shù)項級數(shù)
9.2 冪級數(shù)的收斂域及和函數(shù)
9.3 函數(shù)f(x)在點x0處展成冪級數(shù)
9.4 函數(shù)f(x)展開為富里哀級數(shù)
自我練習(xí)題與答案
第二部分 線性代數(shù)
第1章 行列式
1.1 內(nèi)容提要
1.2 例題分析
自我練習(xí)題及答案
第2章 矩陣
2.1 內(nèi)容提要
2.2 例題分析
自我練習(xí)題及答案
第3章 向量和矩陣的秩
3.1 內(nèi)容提要
3.2 例題分析
自我練習(xí)題及答案
第4章 線性方程組
4.1 內(nèi)容提要
4.2 例題分析
自我練習(xí)題及答案
第5章 向量空間內(nèi)積正交陣
5.1 內(nèi)容提要
5.2 例題分析
自我練習(xí)題及答案
第6章 特征值特征向量
6.1 內(nèi)容提要
6.2 例題分析
自我練習(xí)題及答案
第7章 二次型
7.1 內(nèi)容提要
7.2 例題分析
自我練習(xí)題及答案
第三部分 概率論與數(shù)理統(tǒng)計
第1章 隨機事件及其概率
1.1 內(nèi)容提要
1.2 例題分析
自我練習(xí)題與答案
第2章 隨機變量及其分布
2.1 內(nèi)容提要
2.2 例題分析
自我練習(xí)題與答案
第3章 多維隨機變量的分布
3.1 內(nèi)容提要
3.2 例題分析
自我練習(xí)題與答案
第4章 隨機變量的數(shù)字特征
4.1 內(nèi)容提要
4.2 例題分析
自我練習(xí)題與答案
第5章 大數(shù)定律與中心極限定理
5.1 內(nèi)容提要
5.2 例題分析
自我練習(xí)題與答案
第6章 樣本及抽樣分布
6.1 內(nèi)容提要
6.2 例題分析
第7章 參數(shù)估計
7.1 內(nèi)容提要
7.2 例題分析
自我練習(xí)題與答案
第8章 假設(shè)檢驗
8.1 內(nèi)容提要
8.2 例題分析
自我練習(xí)題與答案
附錄 1998年,1999年全國攻讀碩士學(xué)位研究生入學(xué)考試數(shù)學(xué)試題及參考答案
圖書封面
評論、評分、閱讀與下載
工學(xué)碩士研究生入學(xué)考試數(shù)學(xué)復(fù)習(xí)指導(dǎo)(第2版 PDF格式下載